INTERMEDIATE MACROECONOMICS MALTHUSIAN MODEL OF GROWTH 24. OUTPUT PER WORKER IN THE MALTHUSIAN MODEL

Pascal Michaillat pascalmichaillat.org/c4/

EVOLUTION OF OUTPUT PER WORKER

- recall 1: output per worker is $y(t) = [A X / L(t)]^{\alpha}$
- recall 2: the fertility rate is $n(t) = (\beta/p) \times y(t)$
- recall 3: population follows $L(t+1) = n(t) \times L(t)$
- hence: $y(t+1) = [A X / L(t+1)]^{\alpha}$
- $y(t+1) = [A X / (n(t) \times L(t))]^{\alpha} = [A X / L(t)]^{\alpha} \times n(t)^{-\alpha}$
- so $y(t+1) = y(t) \times n(t)^{-\alpha}$
- thus $y(t+1) = y(t) \times (\beta/p)^{-\alpha} \times y(t)^{-\alpha} = (p/\beta)^{\alpha} \times y(t)^{1-\alpha}$
- law of motion of output per worker: $y(t+1) = (p/\beta)^{\alpha} \times y(t)^{1-\alpha}$

STEADY-STATE OUTPUT PER WORKER

- the dynamics of output per worker are given by $y(t+1) = \psi(y(t))$
 - where the function $\psi(y) = (p / \beta)^{\alpha} \times y^{1-\alpha}$
- steady-state output per worker satisfies:
 - y(t+1) = y(t)
 - once output per worker reaches its steady-state level, it does not change
- so in steady state, $y^* = \psi(y^*)$
- $y^* = (p/\beta)^{\alpha} \times (y^*)^{1-\alpha}$
- hence in steady state: $y^* = p/\beta$

STEADY-STATE OUTPUT PER WORKER

DYNAMICS OF OUTPUT PER WORKER

DETERMINANTS OF LONG-RUN OUTPUT PER WORKER

- output per worker y determines the standards of living
 - because each worker consumes $c = (1-\beta) \times y$
 - (each child consumes a fixed amount p)
- steady-state output per worker is higher when
 - people value children less (low β)
 - children eat more food (high p)
 - but land (X) and technology (A) have no effect on output per worker in steady state

DYNAMICS AFTER AN EPIDEMICS

•after an epidemics, the population shrinks, so output per worker increases •as output per worker is above y*, there is more food per household than in steady state $y_{t+1} = \psi(y_t)$ • thus households have more children than in steady state and population is increasing over time • simultaneously output per

worker is falling over time

7

 y_t

IMPROVEMENT IN TECHNOLOGY

8

 y_{t+1}

 technology improves from A^{l} to $A^{h} > A^{l}$ population is at steady state L*, so output per worker increases from $y^* =$ $[A^{l}X/L^{*}]^{\alpha}$ to $y^{h} = [A^{h}X/L^{*}]^{\alpha}$ •as output per worker is $y_{t+1} = \psi(y_t)$ above y*, there is more food per household than in steady state, so households have more children population is increasing over time, so output per worker is falling over time

 y_t

THE MALTHUSIAN TRAP

- in the short run, an increase in technology raises output per worker
 - because land and working population are determined at the time of the shock
- but in the long run, technology has no effect on output per worker and thus consumption per capita
 - higher technology implies higher population, which absorbs the higher output produced with the better technology
- the short-run increase in output per worker temporarily leads to more children, which raises population and eventually reduces output per worker

THE MALTHUSIAN TRAP

- what happens for technological improvements also occurs for the discovery of new arable land
 - a land expansion raises output per worker in the short run
- but in the long run, new land has no effect on output per worker and thus consumption per capita
 - more land implies higher population, which absorbs the higher output produced with larger amount of land
- the model generates a Malthusian trap: standards of living do not improve with better technology or more land
 - the only change is that population increases

SUMMARY: THE MALTHUSIAN ERA

- the Malthusian model describes well the Malthusian era that prevailed before the Industrial Revolution (in 19th century)
- output per capita fluctuates around a subsistence level
- technological progress and land expansion lead to
 - temporary increase in output per capita
 - no effect on output per capita in the long run
 - increase in population in the long run
- the Malthusian model is a model of population growth, not a model of growth in standards of living

EMPIRICAL IMPLICATIONS OF THE MALTHUSIAN MODEL

- regions with high technology or a lot of arable land have
 - high population density
 - but same output per capita
- variations in technological advancement across countries will be reflected in variations in population density:
 - <u>in line with effect of land quality</u> —> higher
 population density, but no effect on income per capita