
IaC-Eval: A Code Generation Benchmark for
Cloud Infrastructure-as-Code Programs

Patrick Tser Jern Kon, Jiachen Liu, Yiming Qiu, Weijun Fan, Ting He
Lei Lin, Haoran Zhang, Owen M. Park, George S. Elengikal, Yuxin Kang

Ang Chen, Mosharaf Chowdhury, Myungjin Lee‡, Xinyu Wang
University of Michigan ‡Cisco Research

Abstract

Infrastructure-as-Code (IaC), an important component of cloud computing, allows
the definition of cloud infrastructure in high-level programs. However, developing
IaC programs is challenging, complicated by factors that include the burgeoning
complexity of the cloud ecosystem (e.g., diversity of cloud services and workloads),
and the relative scarcity of IaC-specific code examples and public repositories.
While large language models (LLMs) have shown promise in general code genera-
tion and could potentially aid in IaC development, no benchmarks currently exist
for evaluating their ability to generate IaC code. We present IaC-Eval, a first step
in this research direction. IaC-Eval’s dataset includes 458 human-curated scenarios
covering a wide range of popular AWS services, at varying difficulty levels. Each
scenario mainly comprises a natural language IaC problem description and an
infrastructure intent specification. The former is fed as user input to the LLM,
while the latter is a general notion used to verify if the generated IaC program con-
forms to the user’s intent; by making explicit the problem’s requirements that can
encompass various cloud services, resources and internal infrastructure details. Our
in-depth evaluation shows that contemporary LLMs perform poorly on IaC-Eval,
with the top-performing model, GPT-4, obtaining a pass@1 accuracy of 19.36%. In
contrast, it scores 86.6% on EvalPlus, a popular Python code generation benchmark,
highlighting a need for advancements in this domain. We open-source the IaC-Eval
dataset and evaluation framework at https://github.com/autoiac-project/iac-eval to
enable future research on LLM-based IaC code generation.

1 Introduction

Cloud computing has become a cornerstone of our digital infrastructure. According to recent
reports [55, 31], 94% of all enterprises use cloud services of some form. Building on this trend,
“Infrastructure as Code” (IaC) has emerged as the standard for developing cloud infrastructure. IaC
allows users to codify their desired infrastructures within high-level IaC programs, which can be
deployed repeatably and consistently. The IaC frameworks in turn are responsible for provisioning
the underlying resources (e.g., compute instances) specified in the program, by interacting with
cloud-specific APIs. The most widely adopted tool leading this paradigm is Terraform [34], and
is the focus of our paper. Terraform programs (otherwise known as configuration files) are written
in the HCL language [68]; Fig. 1a illustrates a simplified example of such a program, where we
construct an infrastructure consisting of a compute instance (VM) connected to a network. First, we
have resource blocks which define instances of specific infrastructure components. Cloud services
typically encompass multiple resources, each representing a distinct part of the service, and the
selection of these resources depends on the specific use case; here, we need a SUBNET and NIC,
both essential parts of the virtual private cloud service, a key networking component. Second, these
resource blocks contain various attributes that dictate their instantiation. Attributes can have different

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/autoiac-project/iac-eval


value types, including strings, enum types (e.g., “US-west”), lists (the value of nic_ids), and even
nested structures (the cpu_options attribute). Third, these resources can be interconnected through
specific attributes, forming a dependency graph. In our example, the three resources are interlinked:
the VM is connected to the NIC via the nic_ids attribute, while the NIC and SUBNET are connected
through the subnet_id attribute.

Developing IaC programs is a challenging task. For one, cloud infrastructures can be built using a
vast array of services offered uniquely by various providers (e.g., AWS, GCP), each with complex
domain-specific details/rules frequently underspecified at the IaC level [59], requiring deep cloud
expertise to get right. Second, this could involve learning a new language, as is the case for Terraform,
whose programs are specified in the feature-rich HCL language [68], which is a domain-specific
language unfamiliar to most developers (e.g., as evidenced by the relative scarcity of IaC-specific
code in public repositories compared to general-purpose languages [65]). Third, this complexity is
further compounded by the growing diversity of cloud workloads incorporated within enterprises,
extending beyond a few broad categories of Software-as-a-Service (SaaS) products [28], which in
turn demands highly customized cloud infrastructures. Consequently, it is no surprise that 92% of
enterprises employ extensive cloud engineering teams to manage this highly customized and intricate
infrastructure [33].

We believe LLMs are a natural next step to aid in the process of creating infrastructure code. Indeed,
LLMs have shown promise for general code generation, as exemplified by models such as Codex,
CodeLlama [50], and AlphaCode [45]. As a result, a surge of datasets and benchmarks have emerged,
such as the widely used hand-crafted HumanEval [26] (Python programming), to quantify how
well these models perform. Unfortunately, while existing models and datasets/benchmarks target
general-purpose languages, the ability of existing LLMs to effectively generate IaC code remains
uncertain, since there exist no systematic studies nor datasets/benchmarks available to quantitatively
evaluate LLM performance on IaC code generation.

IaC-Eval bridges this gap with the first dataset and benchmark for evaluating IaC code generation.
As a first step in this domain, our dataset (Sec. 2.2) specifically targets AWS, the most popular
cloud provider [67]. Our dataset includes 458 human-curated scenarios (comparable in size to the
HumanEval dataset [26] which contains 164 programming problems) covering a variety of popular
services, compiled over 1720 hours, ranging from simple to highly challenging scenarios that involve
multiple resources across various services which can contain hundreds of lines of code (LoC). Each
scenario consists mainly of a natural language problem description (e.g., “Create an AWS database”)
fed as user input to the LLM, and an infrastructure intent specification (Sec. 2.3) to check against the
LLM generated program. This intent specification fulfils two key objectives:

Objective 1: Determining user intent fulfilment. The specification ensures that the generated IaC
program conforms with the user’s intent by explicitly detailing the problem’s requirements, which can
include various cloud services, resources, and internal infrastructure details. Crafting specifications is
challenging, because just like regular programs: (1) User requirements for cloud infrastructure can be
ambiguously specified. For instance, there are nearly a dozen ways to create an “AWS Database” [22]
(e.g., DynamoDB, RDS). (2) Cloud infrastructure can also be complex. There are over 4,000 providers
within the Terraform ecosystem alone [14], each offering unique services composed of resources
utilized in various ways. For example, AWS alone provides more than 200 services, each with
multiple configuration options and interdependencies. These services can sometimes involve dozens
of interlinked resources, with specific instantiation details governed by provider-specific rules that
may or may not be publicized [59]. Furthermore, with new services and updates continuously being
introduced [23, 36], the landscape is constantly evolving, adding to the complexity. Overall, this
means that the resulting specification for each problem description will codify a range of possible
intent-fulfilling IaC programs, requiring deep cloud and IaC expertise to get right.

Objective 2: Scalable evaluation. Checking for intent fulfilment in IaC-Eval does not require execut-
ing the IaC programs, which typically involves deployment directly onto the cloud. Notwithstanding
the fact that successful deployments are not an indication of correct fulfilment of user intention, this is
problematic because deployments can take a significant amount of time—even simple configurations
may require minutes to hours to deploy [59], making it an impractical evaluation strategy. Instead of
waiting for a full deployment cycle (e.g., relying on knowledge from a state file [69] which will only
be produced after a successful deployment), our evaluation benchmark relies only on compile-time
operations that can be completed quickly and do not necessitate deployment (Sec. 2.1).

2



(a) Simpli�ed example IaC program. (b) IaC-Eval evaluation work�ow.

Figure 1: IaC-Eval evaluation benchmark overview, and example IaC program.

Figure 2: IaC-Eval dataset service and dif�culty distribution.

Comprehensive evaluation.Finally, we conduct a detailed evaluation (Sec. 3) against a range of
state-of-the-art models known for their strong performance on the EvalPlus [48] benchmark (an
improved version of HumanEval). Our results show that these models perform poorly on IaC-Eval,
even with various enhancement strategies.

2 The IaC-Eval benchmark and dataset

2.1 IaC-Eval benchmark: a high-level overview

We �rst describe our evaluation benchmark's overall work�ow, illustrated in Fig.1b. Notably, we
combined existing components natively supported by IaC (to bene�t from continuous updates and
robust support) into a novel benchmark for evaluating IaC code generation.1 First, a problem
description is retrieved from the dataset (Sec. 2.2) and fed to the LLM under evaluation.2 The
resulting LLM-generated IaC program is then fed into a two-phase pipeline that determines if
the program is correct (or incorrect) without requiring deployment.3 In the �rst phase, the
generated IaC program is transformed into a speculative deployment plan using the nativeterraform
plan [35] command, which produces a dependency graph. This phase includes basic validations to
ensure syntactical accuracy and adherence to a limited set of cloud provider-speci�c requirements.
Con�gurations failing this step are deemed incorrect by IaC-Eval.4 Next, the problem's user
infrastructure intent speci�cation (Sec.2.3) written in theRegolanguage [51] is5 matched against
the dependency graph usingOPA[66], the most widely used IaC policy engine; a tool typically
used to de�ne policies (e.g., security, conformance), that IaC-Eval repurposes to evaluate user intent
ful�lment. If no errors are found, the IaC program is considered correct.

3



2.2 Dataset characteristics

IaC-Eval's dataset is structured with each row consisting of three key columns: (1) a natural language
prompt describing the problem, (2) user intent speci�cations written in Rego (Sec. 2.3), and (3) one
example of a correct con�guration written in Terraform HCL [68], which we envision could be useful
in the future for �ne-tuning purposes. Creating this dataset requires signi�cant domain knowledge
and a deep understanding of cloud services and the intricacies of cloud infrastructure orchestration. It
also demands pro�ciency in two languages markedly different from regular imperative languages:
namely, HCL and Rego, which are complex declarative languages unfamiliar to regular developers.

Fig. 2 illustrates that our dataset addresses a comprehensive set of commonly used cloud infrastructure
services [64, 56, 39], where each problem count is represented by some resource in a given service.
This includes a full stack of infrastructure components typically required in cloud environments: (1)
Compute services: EC2, Lambda, and Lightsail; (2) Relational and in-memory databases: RDS and
ElastiCache; (3) Data warehouses: Redshift; (4) Networking elements: virtual private cloud (VPC),
Route53 (DNS service), and API gateways; (5) Content delivery networks: CloudFront; (6) Key-value
stores: DynamoDB; (7) Object storage: S3; (8) Security: identity and access management (IAM),
and monitoring service (Cloudwatch); (9) Stream processing: Kinesis, and managed Kafka (MSK).
We note that certain services (in particular, VPC and IAM) are often required across problems, and
hence appear disproportionately in the dataset; in contrast, certain other services aren't composed of
many distinct resources, and hence appear to have fewer counts in the dataset. Services are often
interconnected in various con�gurations, requiring multiple services to address a single problem (e.g.,
an RDS instance deployed in a speci�c VPC). All of these services are also made up of a diverse
set of lower-level resources that control more �ne-grained functionality: for instance, as shown
in Fig. 3(a), within the Aurora service, we could instantiate an Aurora DB cluster resource [20]
(deployed across multiple regions), that utilizes a DB proxy [21] to pool/share database connections.
Furthermore, each of these resources can be con�gured in unique ways through various default and
optional attributes (e.g., setting an idle timeout duration for the DB proxy).

Finally, we introduce a system of dif�culty levels for IaC problems. We recognize that determining
these levels is inherently ambiguous and subjective, akin to the informal designations used by online
programming platforms (e.g., LeetCode [18]) and in existing research [49]. Nevertheless, we propose
an approximation that can calculate a dif�culty level automatically by parsing the con�guration, that
is based on LoC, the number of resources, and their interconnections in the desired con�guration
(Appendix. A.4). The inset �gure within Fig. 2 shows a full spectrum of dif�culty levels found
within our dataset, with over half of our dataset consisting of con�gurations with more than 4
interconnections, 4 resources, and over 42 LOC, and the longest con�gurations having either 280
LOC, 24 resources or 33 interconnections.

2.3 Infrastructure intent speci�cations

Just like regular coding problems, infrastructure problems can often be speci�ed ambiguously, where
the user's intention is not always clearly de�ned. To address this, we use OPA Rego to encode a range
of possible correct con�gurations for a given problem, creating an infrastructure intent speci�cation
crafted by a human expert. This step is crucial because functional correctness processes alone, such
as ensuring con�gurations can be compiled, cannot resolve ambiguities in the user's intent. Intent
specs in our dataset vary in length, averaging 37.5 LOC, and the longest spec containing 205 LOC.

In general, the speci�cation will contain three categories of intents (i.e., clarifying three sources of
ambiguity): (1) valid resources, (2) optional attributes, and (3) required attributes. The valid resources
specify their dependencies and the number of resources allowed. The optional attributes specify their
existence, and/or the range of acceptable values whereas the required attributes mandate the range of
acceptable values. Note that anything not included in the speci�cation is considered incorrect. This is
showcased via an example in Fig. 3(b): For example, for valid resources, the intent spec contains
a validation block (is_valid_aws_db_proxy ) that checks if anaws_db_proxyresource exists in
the LLM-generated con�g. Further, specifying a connection timeout limit for anaws_db_proxy
is optional according to cloud-provider guidelines; however, since it is explicitly speci�ed in the
prompt, the intent will enforce its value to be between 1800 and 3600 (while inferring that this is
speci�ed in seconds). As another example, the intent infers that daily DB backups are equivalent
to simply including apreferred_backup_window attribute, with the example timing of morning
backups being irrelevant. For required attributes, theengine_family attribute within the proxy is

4



Figure 3: IaC-Eval dataset row simpli�ed snippet.

constrained by the user prompt to only use a subset of valid cloud-provider-de�ned values. We do
not need to verify the existence of required attributes, as these are automatically validated during the
compilation phase.

We emphasize that crafting the initial batch of dataset intents is challenging, but there is signi�cant
reuse potential across multiple con�gurations. The intents we have created can serve as templates
(e.g., a validation block for a given resource), allowing for easier adaptation with minor adjustments.
Moreover, problems often imply the existence of many interlinked required or optional resources
each with their own attributes. For instance, creating an EC2 instance not only requires an attached
AWS network interface card but also depends on a VPC, which in turn requires subnets and route
tables. This chain of dependencies can extend even further, including security groups, IAM roles,
and policies. Since manually specifying all these details at this stage is impractical, we leave some
aspects under-speci�ed, similar to the approach seen in HumanEval [48]. An example is provided in
Fig. 3(a), where anIAMrole, which governs the actions executable by the DB proxy, is attached to
the proxy via therole_arn attribute. The actual IAM role resource block itself is omitted for brevity.
Therole_arn is a required attribute of the resource, and its presence in a correct con�guration is
therefore implied (not explicitly stated) in the prompt. To simplify crafting intents, we only verify
the existence of theaws_iam_role resource block and ensure that its policy is not empty; we do
not check its content. With this base dataset, we envision a move towards the automatic synthesis of
intents (Sec. 4) to facilitate the expansion of our dataset with increased service/provider coverage.

3 Experiments

3.1 Evaluating LLMs performance on IaC-Eval

We evaluate a range of code generation models used within the popular HumanEval [26] and
EvalPlus [48] Python code benchmarks, against IaC-Eval. These include the top-ranked GPT4, Wiz-
ardCoder [49] and Magicoder [70] models, and CodeLlama [50] variants. Inference was performed
using OpenAI APIs for GPT-4 and GPT-3.5, and Replicate [60] endpoints for all the other models,
except for Magicoder, which was deployed on ag5.2xlarge instance running an NVIDIA A10G
GPU (24 GB memory) via AWS SageMaker. We use the unbiased version of pass@k[26], a standard
metric also used in the aforementioned benchmarks, to assess correctness by generating 20 samples
for each problem. This method gives us the probability that at least one out ofk chosen samples among
the 20 is correct. The IaC-Eval column of Table 1 showcases our results where scores are tabulated in
terms of pass@1 accuracy: our top-ranked models are GPT-4, WizardCoder-33B-V1.1, and GPT3.5,
achieving a score of 19.36%, 8.93%, and 7.99%, respectively. Our worst-performing model was
CodeLlama instruct (7B) which scored 1.97%. This is in stark contrast to these models' performance
on EvalPlus, where they scored 86.6%, 73.2%, 70.7%, and 35.4%, respectively; highlighting the

5



Table 1: Average benchmark scores for various models when tested against various evaluation metrics.
Popular LLMs perform poorly on IaC-Eval, showcasing its dif�culty.

Model Evaluation metric
Rank Name BLEU CodeBERTScore LLM-judge IaC-Eval

1 GPT-4 18.49 83.39 61.79 19.36
2 WizardCoder-33B-V1.1 15.22 80.50 28.72 8.93
3 GPT-3.5-turbo 14.52 77.26 34.49 7.99
4 Magicoder-S-CL-7B 14.22 79.49 23.14 7.62
5 Gemini 1.0 Pro 11.96 78.90 19.72 3.43
6 CodeLlama Instruct (34B) 11.47 78.64 11.97 2.99
7 CodeLlama Instruct (13B) 11.18 76.46 9.83 2.01
8 CodeLlama Instruct (7B) 9.31 70.22 7.18 1.97

(a) Pass@kscores for the top 6 models on IaC-Eval. (b) Precision/recall for LLM-judge.

Figure 4: Multi-sample generation improves scores. LLM-judge decisions are unreliable.

dif�culty of our dataset [32], and demonstrating that current models are ineffective at generating
IaC code. Further, extended results containing pass@kscores for allk values are showcased for the
Top-6 performing models in Fig. 4a. We observe improvements across all models with increasingk
values, except for Magicoder; upon closer inspection, we found that this is because Magicoder tends
to get correct answers for a narrow set of problems consistently, where generating more samples does
not yield signi�cant accuracy improvements. Finally, we showcase an example incorrect generated
IaC program in Fig. 6, demonstrating that even GPT-4 can exhibit issues such as hallucinating entire
service components.

Impact of intents and dif�culty on evaluation scores. To examine the utility of our benchmark's
two-step pipeline, we compare the accuracy (Fig. 5a) when only Terraform compilation checks are
used (blue hatched bars), and when both compilation and intent checks are used: across all models,
intent speci�cations helped remove over� 50% of false positives, i.e., programs deemed correct
by the Terraform compilation phase but are actually incorrect as they do not satisfy user intent.
Separately, our results in Fig. 5b show that complex IaC-Eval problems are harder for models to
solve, demonstrating the ef�cacy of our system of dif�culty levels.

3.2 Comparing IaC-Eval against baseline metrics

We compare IaC-Eval against three existing metrics with results tabulated in Table. 1:

BLEU and CodeBERTScore.Both are widely utilized to assess the quality of machine-produced
translations [26, 73] by determining how similar some generated text is to a reference text; unlike
BLEU [54] which is general purpose, CodeBERTScore [76] is speci�cally designed for code gen-
eration. Both produce scores ranging from 0 to 1, with higher values indicating better translation
quality. Our results are displayed as percentages: though a downward trend in scores is observed for

6




	Introduction
	The IaC-Eval benchmark and dataset
	IaC-Eval benchmark: a high-level overview
	Dataset characteristics
	Infrastructure intent specifications

	Experiments
	Evaluating LLMs performance on IaC-Eval
	Comparing IaC-Eval against baseline metrics
	Assessing common enhancement strategies

	Discussion
	Related work
	Conclusion
	Acknowledgments
	Additional IaC-Eval details
	Dataset URL and links
	Data format
	Maintenance and long-term preservation
	IaC-Eval difficulty levels

	Experimental setup details
	Few-shot prompt template
	Chain-of-thought prompt template
	Multi-turn prompt template
	RAG prompt template
	Detailed experimental setup


